How standards are accelerating the adoption of machine source radiation sterilization

Emily Craven, Director Global Sterility Assurance Boston Scientific Medical Device Sterilization Workshop Sept 24, 2021

Identifying the need

- For the medical device industry to continue to grow, we need to provide more options for radiation sterilization
- In order to take advantage of machine source radiation, guidance can help organizations understand fundamentals of:
 - Designing products for radiation
 - Transferring products from one radiation source to another
- The collaboration between industry and regulatory and between standards organizations is helping to fill this gap

Relevant Standards Organizations

- AAMI ST Sterilization Standards Committee
 - WG2 Radiation Sterilization
 - WG8 Microbiological Methods
 - WG15 Assurance of Sterility
 - WG96 Compatibility of Materials
- ASTM E61 Radiation Processing
 - E61.01 Dosimetry
 - E61.02 Dosimetry Systems
 - E61.03 Dosimetry Applications
 - E61.04 Specialty Applications
- ISO TC198 Sterilization of health care products

How standards help

- Recent work in standards is helping to lay the groundwork for easing the transfer between sterilization modalities
 - Ready for publication: TIR100, End-to-end microbiological quality and sterility assurance
 - Ballot passed, preparing final draft for review: TIR104, Guidance on transferring health care products between radiation sterilization sources
 - Work started on revision to ISO 11137-1, Requirements for development,
 validation and routine control of a sterilization process for medical devices
 - New revision initiated: TIR17, Compatibility of materials subject to sterilization
 - New ASTM standards on modality specific OQ

How standards for radiation sterilization work

TIR 100 - End-to-end

What is meant by end-to-end?

 Decisions made during all stages of product design and lifecycle can have implications for sterilization options

How does TIR 100 help?

 TIR 100 is not a radiation specific document but provides guidance on decision making at each of the stages that can affect the ability of a product to be radiation sterilized.

Can I choose radiation compatible materials?

SOURCE

Where is my sterilization capacity?

How is my product quality maintained?

PLAN

What will my sources of bioburden be?

MAKE

What controls are in my work environment?

Are my requirements being met?

Design for Sterilization - Examples

Materials selection and intended function

- Alternate materials, e.g. PCTFE or PVF vs PTFE or Radiation stabilized PP vs PP
- Leachables/extractables post-sterilization (plasticizers, fillers, additives, antioxidants) affecting biocompatibility
- Potential for beneficial sterilization induced changes (i.e. annealing, reducing solvents, curing hydrophilic coatings)
- Residuals as a function of mode of patient contact and patient population
- Does the product need to be sterile? (accessories, cables)

Design and Manufacturing

- Tight interferences between mated surfaces (e.g. stoppers, metal-metal, etc.)
- Areas of high density
- Bioburden controls requirements for manufacturing environment and incoming materials

Testing protocols

 Extent of verification testing allows resterilization and/or response to deviations in process

Packaging Considerations

- Gas permeability may impact shelf life for combination products that have oxygen sensitivity – added packaging step vs qualifying radiation process
- Orientation of product within packaging, repeatability and rigidity for radiation processes
- Amount of material going through sterilizer and impact on process efficiency and fugitive emissions
- Size of product box relative to sterilizer

Sterilization Site

- Capacity availability and back up
- Turn around time and inventory considerations
- Carbon footprint and/or extra packaging associated with transportation
- Cold chain or special environmental requirements

Regulatory efficiencies

- Time to market novel vs established, predicate products etc.
- Product families leveraging existing product testing data

TIR17 – Compatibility of materials

- TIR17 is a resource that can be used in new product design when selecting materials for a health care product
- Valuable update provided in 2017, but as materials evolve and new sterilization methods develop, new information should be incorporated
- Work on the next revision is underway
 - Better guidance on ranking systems for material compatibility
 - Modality selection process guidance
 - Guidance on appropriate challenge conditions and testing
 - Guidance on evaluating changing modalities?

TIR 104 – Transfer between radiation sources

- TIR104 was initiate to clarify (and correct) information in ISO 11137-1 on transfer between radiation sources
- Evaluation of process capability when making the decision to transfer
 - Can the irradiator physically deliver the dose required?
 - Will dose specifications need to be updated (and what is the likelihood of success?)
- Guidance on transfer of both:
 - Sterilization dose
 - Maximum acceptable dose

Transfer fundamentals

Minimum Dose is Dose

- When product is dry, sterilization and verification doses do NOT need to be re-established
- When product is wet or can support microbial growth, a dose audit can be used to verify that sterilization dose is appropriate
 - Also applies to changing locations with same modality

Maximum Dose is not always Dose

- Dose rate and temperature may have an impact on maximum dose suitability
- In general transfers from low dose rate to high will not require retesting unless a new maximum dose needs to be established to meet DUR requirements
- Activation assessment required for e-beam >10MeV or x-ray >5MeV

TIR 104 – End-to-end considerations

- How easy it is to transfer dose depends on how much information you already know about your product
 - Sterilization dose: How did you determine? What bioburden controls do you have in place to reduce minimum dose?
 - Maximum acceptable dose: Do you know your REAL maximum dose or did you just challenge the process you had available?
- Does your product rely on the sterilization process for a functionality enhancement vs failure?
 - Crosslinking that makes product or packaging stronger?
 - Heating which anneals or cures

Transfer – How design elements help

- Packaging: Does your packaging design allow for a presentation to both electrons and photons?
 - Try not to have high density areas overlap
 - Try to keep nuclear thickness as uniform as possible
 - Consider both single unit and shipper configurations
 - Will your package size work at multiple irradiators (i.e. pallet vs tote vs conveyor)
- Is your packaging and product together designed to allow for heat transfer out of the package?
- Can your product be flipped for a vertical electron beam process?

Other work in standards

ISO 11137-1 revision

- Align with ASTM standards and ISO 11137-3 and -4
- Align with ISO 11137-2 and 13004
- Provide more specific allowances and guidance for parametric release
- Look at changing the threshold for activation assessment
- Align with TIR104

ASTM new documents

- Provide better technology specific OQ guidance
 - Gamma completed
 - Electron beam in process
 - X-ray next!
- Update and author standards as appropriate to be referenced in revised ISO 11137-1

Other publications

- Peer reviewed publications can lay the groundwork for future guidance and standards
- Two recent groups of AAMI BI&T supplements organized by the Kilmer Collaboration team, article are referenced in TIR104:
 - Industrial Sterilization, Process Optimization and Modality Changes: www.aami.org/sterilization-supplement-2020
 - Industrial Sterilization, Challenging the Status Quo, Driving for Continuous Improvement: https://www.aami.org/news-resources/publications/bi-t/is-supplement/is-supplement-2021
- Articles published in Radiation Physics & Chemistry on specific topics also used to support TIR17, ISO11137-1 including outputs from Team Nablo and IMRP

In summary

- New guidance will help accelerate the adoption of machine source radiation sterilization technology
- Consideration of end-to-end product lifecycle will make modality transitions easier
- Coordination between different standards organizations is key
- Standards work is a great example of **collaboration** to meet the needs of the health care product sterilization community
 - There are opportunities to **get involved**, please take advantage!